Résumé des exposés du 22 octobre

  • Gary McGuire (University College Dublin)-« Further results on divisibility of Kloosterman Sums over Finite Fields »

Travaux commun avec Richard Moloney, Faruk Gologlu

RESUME : Kloosterman sums, their values and distribution of values, have several connections to coding theory, cryptography, bent functions, and aspects of number theory (see Dillon, Lachaud-Wolfmann for example). The value 0 has particular interest. A characterization of zeros of Kloosterman sums over binary and ternary fields appears to be difficult to find. Authors such as Lisonek, Helleseth, Zinoviev, Charpin, have recently focused on characterizations of Kloosterman sums that are divisible by certain powers of 2 and 3. We will first give an introduction to the topic, and then present some recent results that characterize Kloosterman sums modulo higher powers of 2 and 3.

Présentation annulée et reportée sine die.

  • Damien Vergnaud (ENS) Systèmes de preuve Groth-Sahai et applications

Travaux en commun avec O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, B. Libert, D. Pointcheval & H. Sibert.

RESUME : Les preuves à divulgation nulle de connaissance sont des protocoles qui permettent à un utilisateur de prouver qu’un énoncé mathématique est vrai sans toutefois révéler une autre information que la véracité de l’énoncé. Une telle preuve est dite non-interactive si elle se compose d’un seul message. Ces preuves ont permis de développer un grand nombre d’applications en cryptographie mais qui sont rarement utilisées en pratique, car les constructions obtenues sont le plus souvent inefficaces. Une ligne récente de travaux, initiée par Groth, Ostrovsky et Sahai, a permis de réaliser des systèmes de preuve beaucoup plus performants pour certains types d’énoncés. Ces systèmes, basés sur les applications bilinéaires, permettent par exemple de prouver de façon efficace qu’un message a été signé sans révéler le message (ou la signature) ou de prouver qu’un texte chiffré possède certaines propriétés sans révéler le message clair.

Cet exposé donnera un aperçu de la construction de ces preuves et discutera ensuite certaines applications récentes développées dans le cadre du projet ANR PACE.

Damien.Vergnaud-22-10-2010 (format pdf)

  • Hugues Randriam (Telecom ParisTech) Construction de systèmes (2,1)-séparants battant la borne probabiliste

RESUME : Les systèmes séparants sont des objets combinatoires dont l’étude a commencé au début des années 1960. Ils ont été réintroduits plus récemment au sein de la communauté cryptographique en relation avec le problème du traçage de traîtres ; dans ce contexte, les codes (t,1)-séparants sont aussi appelés « t-frameproof codes ».

Dans cet exposé on améliore un résultat de Xing en donnant une construction de codes algébro-géométriques t-frameproof sur un alphabet q-aire (q grand) dont le rendement asymptotique est le meilleur connu à ce jour.

Au moyen d’une concaténation, ceci permet de construire de bons codes t-frameproof *binaires*. Un cas particulièrement intéressant est celui où t=2 ; il s’agit là d’un pur problème de combinatoire extrémale, pour lequel on obtient ainsi une construction battant la borne probabiliste. Cette question était restée ouverte depuis une trentaine d’années.

Hugues.Randriam-22-10-2010 (format pdf)

  • François-Xavier Standaert (Université Catholique de Louvain)– « Recent results about side-channel attacks and countermeasures »

RESUME : Traditionally, cryptographic algorithms provide security against an adversary who has only black box access to cryptographic devices. That is, the only thing the adversary can do is to query the cryptographic algorithm on inputs of its choice and analyze the responses, which are always computed according to the correct original secret information. However, such a model does not always correspond to the realities of physical implementations. During the last decade, significant attention has been paid to the physical security evaluation of cryptographic devices. In particular, it has been demonstrated that actual attackers may be much more powerful than what is captured by the black box model. For example, they can actually get a side-channel information, based on the device’s physical computational steps. As a consequence, some kind of obfuscation is required to protect integrated circuits from these physical attacks. This is especially important for small embedded devices (e.g. smart card, RFIDs, sensor networks, …) that can typically be under an adversary’s control for a short period of time. This implies new theoretical concerns (how to exactly model and evaluate these physical threats) and practical ones (how to prevent them). In this talk, I will discuss different results in the area of side-channel attacks, with a particular focus on formal tools that can be used to evaluate physical security on a fair basis. Starting from an introductive view of the field, I will describe some well known attacks and countermeasures, present a framework for the analysis of side-channel key-recovery from Eurocrypt 2009, with some of its applications, and finally discuss the connection of this framework with recent works in leakage-resilient cryptography.

Francois-Xavier.Standaert-22-10-2010 (format pdf)

Résumé des exposés du 18 juin

  • Delphine Boucher (Université de Rennes 1)Autour des codes définis sur des anneaux de polynômes tordus

Travail en commun avec W. Geiselmann et F. Ulmer.

RESUME : Les codes tordus sont définis dans des anneaux (non commutatifs) de polynômes tordus sur un corps fini Fq noté Fq[X,theta] où theta est un automorphisme de Fq et la multiplication est régie par la règle X a = theta(a) X pour a dans Fq. Les codes ‘idéaux’ theta-cycliques sont obtenus comme des idéaux à gauche de l’anneau quotient Fq[X,theta]/(X^n-1) où n est un multiple de l’ordre de l’automorphisme theta. On peut généraliser cette construction en considérant des quotients Fq[X,theta]/(f) où f est un polynôme central de Fq[X,theta] (on parle alors de codes ‘ideaux’ theta-centraux) mais aussi en considérant des modules à gauche des modules quotients Fq[X,theta]/(f) où f est un polynôme quelconque de Fq[X,theta]. On parlera alors de codes ‘modules’ tordus. Dans cet exposé, après avoir défini les codes tordus, on s’intéressera plus particulièrement à la caractérisation des codes tordus auto-duaux et à leur construction sur F4 pour les produits scalaires euclidiens et hermitiens.

Exposé annulé

  • Pierrick Gaudry (LORIA)Factorisation d’entiers et RSA768

RESUME : En janvier dernier, la factorisation de RSA-768 a été annoncée. Après avoir rappelé quelques éléments généraux sur la factorisation d’entiers, nous expliquerons avec un peu plus de détails l’algorithme du crible algébrique qui est utilisé pour factoriser les modules RSA. Nous détaillerons ensuite comment cet algorithme a été mis en oeuvre dans le cas de RSA-768. Il aura fallu environ 2 ans et demi et la collaboration des équipes de l’EPFL, du CWI, de NTT et de notre équipe nancéienne pour venir à bout de ce calcul.

Pierrick.Gaudry-18-06-2010 (format pdf)

  • Didier Alquié (DGA)« Branch Number » d’un automate linéaire et codes convolutifs récursifs systématiques

Travail commun avec Franck Landelle.

RESUME : Dans ce travail nous proposons un nouveau cadre pour estimer le biais linéaire d’un générateur pseudo aléatoire. Nous définissons le « branch number » d’un automate intermédiaire défini sur un corps fini GF(q) comme le nombre de boîtes actives liées aux entrées et sorties. Cette valeur est utile pour évaluer le biais linéaire global du générateur. Nous montrons qu’elle peut être reliée à la distance libre d’un code convolutif sur GF(q) convenablement défini, et que les codes optimaux par rapport à cette distance conduisent à une borne inférieure – fine – sur le « branch number ». En conséquence, l’utilisation de notre proposition spécifique comme partie d’un générateur pseudo aléatoire permet de fournir une borne supérieure « prouvée » du biais global.

Didier.Alquie-18-06-2010 (format pdf)

  • Christophe Chabot (Université de Rennes 1)Codes quasi-cycliques et polynômes à coefficients matriciels

RESUME : Nous nous intéressons ici à la généralisation de résultats connus sur les suites récurrentes linéaires classiques aux suites récurrentes linéaires ayant un polynôme caractéristique à coefficients matriciels. Nous montrerons qu’il est possible de construire des codes quasi-cycliques à partir de telles suites (par analogie avec la construction de codes cycliques à partir de suites récurrentes linéaires classiques). Nous obtiendrons alors la notion de code quasi-cyclique annulé par un polynôme à coefficients matriciels. Finalement nous construirons des codes quasi-cycliques auto-duaux Euclidiens et Hermitiens qui dans la plupart des cas atteignent les bornes connues pour les distances minimales.

Christophe.Chabot-18-06-2010 (format pdf)

Résumé des exposés du 2 avril

  • Ben Smith (INRIA Saclay)Another look at genus 2 curves

RESUME : After the success of elliptic curves in Discrete Logarithm- and Pairing-based cryptography, researchers have turned towards hyperelliptic curves as an immediate and convenient generalization, motivated by improved efficiency. While higher-genus hyperelliptic curves have been shown to be compromised from a security point of view, curves of genus 2 remain a subject of active research. From the point of view of algebraic geometry, curves of genus 2 and their Jacobians are essentially more complicated than elliptic curves: algorithmically, this presents us with both opportunities and obstacles. In this talk, we will investigate some parallels and differences in cryptosystems based on elliptic curves and curves of genus 2. In particular, we will show how to use explicit Real Multiplication structures to increase cryptosystem efficiency and accelerate point counting algorithms.

(pas de transparents, exposé fait un tableau)

  • Caroline Fontaine (CNRS-LabSTICC/Telecom Bretagne)Codes de Tardös et Fingerprinting

RESUME : Lorsqu’un document multimedia est distribué, par exemple dans un système de vidéo à la demande, il peut être intéressant pour le distributeur de tracer les copies distribuées aux utilisateurs. Ainsi, s’il s’avère que le document distribué a été utilisé de manière non légitime par un ou plusieurs utilisateurs, le distributeur souhaite pouvoir identifier au moins un de ces utilisateurs malhonnêtes. Pour cela, il insère dans les documents distribués des identifiants, différents pour chaque utilisateur, voire chaque transaction. Ces identifiants sont les mots d’un code, dit code traçant, et cette insertion s’effectue par tatouage, de manière imperceptible et robuste. Le problème se corse lorsque une coallition d’utilisateurs se forme pour forger un nouveau document, mêlant alors les identifiants, voire en créant de nouveaux par exemple en moyennant pixel à pixel les images de plusieurs vidéos pour générer une vidéo piratée. Pour que le distributeur ait une chance de tracer au moins un des utilisateurs pirates, il faut que les identifiants insérés présentent une certaine structure, permettant de remonter à eux malgré des mélanges ; il faut par ailleurs également que la technique d’insertion soit en adéquation avec le type de code traçant choisi. De nombreuses recherches ont exploré l’utilisation de codes correcteurs comme codes traçants, mais ceux-ci se sont avérés très lourds à utiliser dans la pratique, car pour être efficaces ils devaient être très longs, et définis sur de gros alphabets. En 2003 G. Tardos, statisticien, a proposé une famille de codes qui a révolutionné le domaine. Ses codes sont en effet optimaux en terme de longueur, très faciles à implémenter et efficaces pour tracer les pirates. Nous commencerons dans cet exposé par présenter la problématique et rappeler l’historique des études menées sur les codes traçants, avant d’en arriver aux codes de Tardos. Après une présentation détaillée de ces codes, nous ferons le point sur la compréhension et la maîtrise que la communauté en a aujourd’hui, et présenterons les résultats que nous avons récemment obtenus quant à leur amélioration, sans oublier les perspectives et problèmes ouverts.

Caroline.Fontaine-02-04-2010 (format pdf)

Une démonstration a été faite, et Caroline Fontaine propose ce lien pédagogique.

  • Maximilien Gadouleau (Université de Reims)Codage réseau linéaire et affine

RESUME : Le codage réseau est un nouveau protocole de transmission de données à travers un réseau qui permet aux noeuds intermédiaires de combiner les paquets qu’ils reçoivent. En particulier, le codage réseau linéaire, où des combinaisons linéaires sont effectuées, offre un plus haut débit et une plus forte robustesse aux variations de topologie que le routage traditionnel. Le codage réseau linéaire peut être modélisé comme la transmission de sous-espaces vectoriels, permettant ainsi une correction non-cohérente de pertes ou d’injections de paquets. Dans cet exposé, nous montrons que le codage réseau en général peut s’exprimer comme la transmission de flats de matroïdes. Grâce à cette généralisation, nous proposons ensuite un nouveau protocole, appelé codage réseau affine, où des sous-espaces affines sont transmis. Nous montrons alors que le codage réseau affine a un plus haut rendement que le codage réseau linéaire. Nous donnons enfin une classe de codes correcteurs d’erreurs quasi-optimaux pour le codage réseau affine, démontrant ainsi que les avantages de ce protocole sont préservés lorsque les paquets sont protégés.

Maximilien.Gadouleau-02-04-2010 (format pdf)

  • Christophe Chabot (Université de Rennes 1)Codes quasi-cycliques et polynômes à coefficients matriciels

RESUME : Nous nous intéressons ici à la généralisation de résultats connus sur les suites récurrentes linéaires classiques aux suites récurrentes linéaires ayant un polynôme caractéristique à coefficients matriciels. Nous montrerons qu’il est possible de construire des codes quasi-cycliques à partir de telles suites (par analogie avec la construction de codes cycliques à partir de suites récurrentes linéaires classiques). Nous obtiendrons alors la notion de code quasi-cyclique annulé par un polynôme à coefficients matriciels. Finalement nous construirons des codes quasi-cycliques auto-duaux Euclidiens et Hermitiens qui dans la plupart des cas atteignent les bornes connues pour les distances minimales.

(exposé annulé et reporté au 18 juin)

Résumé des exposés du 8 janvier 2010

  • Christine Bachoc (Université de Bordeaux)Codes binaires, distances multivariées et programmation semidéfinie positive.

RESUME : C’est un problème classique en théorie des codes de déterminer le nombre maximum de mots qu’un code binaire ayant une distance minimale donnée peut avoir. La meilleure borne supérieure connue pour ce nombre est obtenue par la valeur optimale d’un programme linéaire, et est due à Philippe Delsarte (1973). Un certain nombre de généralisations de la distance de Hamming sous la forme de fonctions de $k\geq 3$ mots binaires ont été étudiées en théorie des codes, notamment en >relation avec la notion de décodage en liste. Nous présenterons un certain nombre de ces fonctions, et montrerons comment la programmation semidéfinie positive combinée avec de l’analyse harmonique du groupe des symétries de l’espace de Hamming peut permettre de donner des bornes analogues à celle de Delsarte, en exploitant des idées issues de l’optimisation combinatoire.

Christine.Bachoc-08-01-2010 (format pdf)

  • Anne Canteaut (INRIA Paris-Rocquencourt)Modes opératoires pour les fonctions de hachage itératives

RESUME : Dans une fonction de hachage itérative, le choix du mode opératoire est essentiel car il influence à la fois sa sécurité et ses performances. La notion d’indifférentiabilité, introduite par Maurer, Renner et Holenstein en 2004, est particulièrement adaptée au cas des fonctions de hachage. Elle a par exemple été appliquée à certaines variantes de la construction de Merkle-Damgard et à la construction éponge, ce qui permet de déterminer le nombre de requêtes à la fonction de compression nécessaires pour différentier la fonction de hachage d’un oracle aléatoire. Nous verrons comment ces preuves peuvent tre généralisées et adaptées par exemple au nouveau mode opératoire utilisé dans Shabal, notre candidat à la compétition SHA-3. Dans ce cas, l’indifférentiabilité est mme préservée (dans une certaine limite) si la famille de permutations paramétrées utilisée ne se comporte pas comme un chiffrement par blocs idéal, mais possède certains distingueurs.
L’intérêt majeur de ce mode est donc qu’il permet d’atteindre de meilleures performances que les constructions classiques, notamment parce qu’il autorise l’utilisation de permutations paramétrées plus rapides que celles employées habituellement.
Ceci résulte d’un travail commun avec les membres de l’équipe de Shabal : http://www.shabal.com

Anne.Canteaut-08-01-2010 (format pdf)

  • Alain Couvreur (INRIA Saclay)Codes géométriques sur les surfaces et leurs duaux, difficultés et points forts

RESUME : Si la théorie des codes sur les courbes a été étudiée de façon approfondie par une communauté aussi large qu’éclectique de mathématiciens, le cas des variétés de dimension supérieure n’a pas bénéficié du même succès. Une des explications de l’intérêt moindre porté sur ces codes est que leur étude est nettement plus complexe. En effet, certains problèmes tels que l’approximation des paramètres ou la description du code dual se résolvent très simplement pour les codes sur les courbes et deviennent extrêmement difficiles lorsque l’on travaille sur des variétés de dimension supérieure.
Dans cet exposé, nous présenterons une nouvelle construction de codes correcteurs d’erreurs à partir de $2$-formes différentielles sur des surfaces algébriques. Cette construction, bien que théoriquement et techniquement plus complexe, s’avère être une extension naturelle aux surfaces de la construction des codes géométriques « $C_{\Omega}$ » de Goppa bien connus dans le cas des courbes. De façon surprenante l’orthogonalité entre codes fonctionnels et différentiels – toujours vraie dans le cas des courbes – ne s’étend pas aux cas des surfaces. En général, le dual d’un code fonctionnel sur une surface ne se réalise pas comme code fonctionnel ou différentiel sur cette même surface. Cette dernière observation fait de la théorie des codes sur les surfaces une théorie en un sens plus riche que la théorie analogue sur les courbes puisque pour une surface donnée on peut construire « deux fois plus de codes », les codes fonctionnels et leurs duaux étant de type différent.
Nous terminerons cet exposé en présentant un procédé d’estimation de la distance minimale de l’orthogonal $C_L^{\bot}$ d’un code fonctionnel sur une surface. Cette méthode de minoration mêle théorèmes de Bertini et théorie de l’intersection.

Alain.Couvreur-08-01-2010 (format pdf)

  • Nicolas Gama (Université de Caen)Réduction de réseau, la boîte à outils du cryptanalyste

RESUME : Depuis 1982, la réduction de réseau est un des principaux outils en cryptanalyse, et plus récemment, en cryptographie. Plus particulièrement, l’algorithme LLL et ses variantes par bloc permettent d’approcher des problèmes NP-durs tels le plus court vecteur (SVP) ou le plus proche vecteur (CVP) dans des réseaux euclidiens. La sécutité de certains cryptosystèmes se traduit naturellement en des problèmes de réseaux (Merkle Hellman, NTRU, LWE, GPV). De par la richesse de l’echelle de complexité des approximations du SVP, certains de ces cryptosystèmes sont totalement cassés, alors que d’autres possèdent au contraire une preuve de sécurité reposant sur une difficulté dans le pire cas.
Les réseaux permettent ont aussi des applications indirectes sur la factorisation de polynomes à coefficients rationnels (inconditionnellement en temps polynomial, il s’agit de la toute première application de LLL), et aussi sur la factorisation entière lorsque l’on connaît une information supplémentaire concernant un de ses diviseurs: comme par exemple un nombre s’exprimant comme un « petit » rationnel modulo un diviseurs. Ce principe, basé sur une variante de la methode de Coppersmith, a permis par le passé de factoriser en temps polynomial des nombres de la forme pq^r avec r grand, il a eu cette année de très lourdes conséquences sur toutes les instances du cryptosystème Nice, et pourrait aussi avoir de légères répercussions sur NTRU.

Nicolas.Gama-08-01-2010 (format pdf)

Séminaire C2
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.